
Papers of the 39th Algonquian Conference, eds. Karl S. Hele & Regna Darnell
(London: The University of Western Ontario, 2008), pp. 378-411.

Building Search Engines for Algonquian languages1

MARIE-ODILE JUNKER AND TERRY STEWART
Carleton University

Résumé
L'élaboration de ressources linguistiques qui aident à la préservation des langues
amérindiennes offrent bien des défis. Bien qu'on compile des dictionnaires, les
locuteurs et locutrices sont souvent bien en peine de les utiliser. La
standardisation récente de l'orthographe, la prédominance de la langue orale et
une grande variation dialectale font que trop souvent, les gens ne trouvent pas
les mots qu'ils cherchent car ils les écrivent de travers ou juste différemment.
Nous montrons ici comment nous avons construit un moteur de recherche pour
le dictionnaire cri de la Baie James sur le web (www.eastcree.org) qui permet
les fautes d'orthographe ou les orthographes créatives, et comment nous l'avons
ensuite incorporé dans un moteur plus complexe pour la recherche de verbes à
partir de formes verbales fléchies Nous montrons aussi comment nous avons
adapté ces outils à une langue voisine, l'innu (ou le montagnais). Notre solution
est de combiner deux approches computationnelles à la correction de
l'orthographe (en mesurant la différence entre le mot entré et les mots du
dictionnaire, et en appareillant la phonétique), et de les adapter aux langues
algonquiennes à partir de connaissances linguistiques. Ce moteur pourrait servir
de modèle et être adapté pour d' autres langues algonquiennes ou minoritaires.

INTRODUCTION

Building effective resources that help preserve Native
American languages presents many challenges. Although resources
like dictionaries are being compiled, speakers often are at a loss in
using them. The recent standardization of orthography, the
predominance of an oral language, and considerable dialectal
variation mean that speakers often do not find the words they are
looking for because of incorrect or non-standard spelling of words.
We show here how we built a search engine for the Eastern James
Bay Cree dictionary on the web (www.eastcree.org) that allows

 MARIE-ODILE JUNKER AND TERRY STEWART

378

spelling mistakes or creative spelling, and how we further
incorporated it into a more complex engine for verb dictionaries,
where an inflected form has to be matched with a basic dictionary
form. We also show how we then adapted our algorithm to the Innu
language.
 East Cree is an Aboriginal language spoken in the Eastern
James Bay region, in Quebec, Canada. There are 13,000 speakers,
living in 9 communities spread over a very large territory. Internet
resources are increasingly used to bridge physical distances
between communities. The East Cree language is taught in the
schools under the administration of the Cree School Board. The
first version of the East Cree dictionary (Cree-English only) was
published in 1987, and the latest version is available on the web at
http://dict.eastcree.org. The web dictionary publication was made
possible by a participatory action research project, called
eastcree.org, which explores how information technology can help
language documentation and preservation. The web version has
allowed the editorial team to make regular updates since its first
release in 2004. A Cree-French version was released in 2007 and is
now also being updated regularly.
 There are two dialects of East Cree, the Northern and the
Southern dialect, the latter being further differentiated between a
Coastal variant and an Inland variant. East Cree is part of a
linguistic continuum ranging from Innu, Montagnais, and Naskapi
in the East, and all the Cree dialects from James Bay to the prairies
in the West.
 Cree has a rich thousand-year oral tradition. Although
syllabic orthography (see appendix A) was established around
1860, and used sporadically for a few religious texts and private
correspondence, the written language came into its own around
1970. The standardization of the orthography is an on-going
process, with speakers of different ages or communities using
different forms of spelling. The orthography used in the Cree
dictionary is the one developed for the Cree School Board by

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

379

MacKenzie et al. (2004) for the Southern dialect and Salt et al.
(2006) for the Northern dialect2. Cree dictionary entries and
examples are given in both syllabic and roman orthographies.
Systematic conversions from roman to syllabic orthographies are
implemented in the web dictionary.
The web dictionary includes the two dialects (Northern and
Southern) and allows searches in Cree syllabics, Cree roman,
English and French. An electronic dictionary of inflected verb
forms is in preparation and will soon complement the existing Web
Dictionary for both dialects.
 The remainder of this paper is organized as follows: First
we discuss the kind of spelling difficulties encountered by Cree
speakers. Second, we explain our solution and how it works. Then,
we describe the computational aspects of the relaxed search and
the verb inflection search. Next, we show how we adapted these
tools to the Innu language. Lastly, we briefly discuss some usage
statistics on how such dictionaries are used.

THE PROBLEMS

 When using a dictionary, speakers often do not find the
words they are looking for. Users of the Cree-English book
dictionary reported not being able to find some Cree words. They
may of course be looking for a word that is just missing from the
dictionary, or they may be searching a word using one of its
inflected forms. The most common reason, however, is poor or
alternative spelling. Evidence for spelling difficulties was gathered
by the first author by observing fluent speakers, from second-
language students (herself included), from reports by Cree literacy
instructors, and from explicit instructions found in the Spelling
Manuals by Salt et al. (2006) and MacKenzie et al. (2004). There
is a number of common spelling problems we needed to address.
We discuss them one by one, using relevant examples, many of
them coming from the Spelling Manuals. We then turn to the
problems of inflected forms.

 MARIE-ODILE JUNKER AND TERRY STEWART

380

Vowel length
 There are seven vowels in Southern East Cree, four long
vowels and three short ones, and this is reflected in the spelling.
Northern East Cree does not have the vowel e. Long vowels are
indicated by a dot over the syllabic symbol and by hats (usually in
print), or by double vowels (usually on the web) in the roman
orthography. The vowel e does not have a short counterpart.
 A common spelling problem arises when users fail to
indicate the proper vowel length. For example, they will search for
ᓇפᐤ napeu instead of ᓈפᐤ naapeu. Since napeu does not exist,
they will not find it. Or they will search for one of: aᒋᒄ achikw
or ᐋᐦᒋᒄ aahchikw when both exist.
 Sometimes the vowel length problem can come from
dialectal differences: In the Northern dialect the following word
has a long vowel: ᓵᓂᑏᐹᓂᔥ saanitiipaanish, while in the
Southern dialect it has a short vowel: ᓵᓂᑎᐹᓂᔥ saanitipaanish.

Vowel quality
 Another common problem comes from dialectal differences
in vowel quality. As shown in the following examples, an e in a
Southern dialect is pronounced and written aa in the Northern
dialect. An a in the Southern dialect corresponds to an i in the
Northern. Since many speakers move from one community to
another today, some confusion occurs.

Southern East Cree Northern East Cree
ᑲᐸt kapat ᑭπt kipit
ᒪᓯᓇᐦᐄᑲn masinahiikan ᒥᓯᓂᐦᐄᑭn misinihiikin
ᓇᒣs names ᓂᒫs nimaas
ᔕᐧeᔨᒣᐤ shaweyimeu ᔑᐧᐋᔨᒫᐤ shiwaayimaau

The vowel quality problem is also apparent in the spelling of
finals. As recommended in the 2004 (Southern dialect) Spelling
Manual:
For most words ending in ᒄ be careful to write π, ᑎ, ᔑ, ᓂ pi,
ti, shi, ni and not ᐳ, ᑐ, ᔓ, ᓄ pu, tu, shu, nu before final ᒄ kw.

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

381

Voice/voiceless consonant differences (not phonemic in Cree)
 The voice/voiceless consonant difference is not phonemic
in Cree, thus it is not reflected in the orthography. However,
biliteracy with English or French where this difference is
represented, leads to its representation in the Cree roman
orthography. Voiced consonants are thus sometimes introduced in
the roman orthography. The following consonants are concerned:
p/b, t/d, k/g, s/z, (sh) [ʃ / ʒ], (ch) [ʧ /ʤ], f/v.
 For example, someone will search in Cree roman, typing
naabeu instead of naapeu. There is actually quite a tradition of
representing this non-phonemic difference in the roman spelling of
place names in Quebec: Waskaganish instead of Cree
Waskakanish, Oujé-Bougoumou, Chisasibi, Wahpmagoostui.

Truncating words
 Some words are truncated. Sometimes people forget dots in
front of syllabic symbols, or a w before a vowel in roman. Dots are
written before a syllabic symbol and indicate a w sound before the
vowel, or between the consonant and the following vowel.
(Spelling Manual, 2004)

Words without the dot or w Words with the dot or w
aᒋᑳᔥ achikaash ᐧaᒋᔥᒄ wachishkw
iᔦsᑯᐴ iyeskupuu ᐧiᔦᔥ wiyesh
eᔥᒄ eshkw ᐧeᔥᑲc weshkach
ᒑk chaak ᐧᒑᑲᓕt chwaakalit
ᒣᐧᑳc mekwaach ᐧᒣᐦc mwehch
ᒌᓈᐤ chiinaau ᒋᐧᓈᐤ chinwaau

Write… Not…
ᒥᔥᑎᒄ mishtikw ᒥᔥᑐᒄ mishtukw
ᒋᓀπᒄ chinepikw ᒋᓀᐳᒄ chinepukw
ᒌᔑᒄ chiishikw ᒌᔓᒄ chiishukw
oᔥᒌᔑᒄ ushchiishikw oᔥᒌᔓᒄ ushchiishukw

 MARIE-ODILE JUNKER AND TERRY STEWART

382

Finals are small syllabic symbols at the end of the word and tend to
be forgotten:

ᒥᑎᐦᒌᐦ mitihchiih
aᑯᐦp akuhp
aᒥsᒄ amiskw
ᒥᓵᐦᒄ misaahkw

Or sometimes people mix k and kw at the end of a word:

Final k Final kw
ᒫk maak ᐧᒫᒄ mwaakw
iᔥᑯᑕk ishkutak iᔥπᒥᐦᑎᒄ ishpimihtikw
ᒉk chek ᒉᒄ chekw
ᑯפk kupek ᐧᐄᓂפᒄ wiinipekw

Another difficulty is to not forget a little h in the middle of a word.
Sometimes there are two distinct words, one with h and one
without:

With ᐦ (h) Without ᐦ (h)
ᒥᐦᒄ mihkw ᒥᒄ mikw
ᓰᐦᑑ siihtuu ᓰᑑ siituu
ᐧᐄᐦᐹᐤ wiihpaau ᐧᐄᐹᐤ wiipaau
ᐆᐦᒉᐤ uuhcheu ᐆᒉᐤ uucheu
ᔮᐦᔦᐤ yaahyeu ᔮᔦᐤ yaayeu
ᒪᐦᑯᔐᐤ mahkusheu ᒪᑯᔐᐤ makusheu
ᒫᐦᑮ maahkii ᒫᑮ maakii
 ᑖᐤ petaauפ ᐦᑖᐤ pehtaauפ
oᐦᒋπᑕm uhchipitam oᒋπᑕm uchipitam

The final u poses two challenges. Sometimes it is written,
sometimes it is not. So there are two possible mistakes: forgetting
or adding the final u. There are some sounds for which no final
exists. In this case a large syllabic without a dot has been used, but
is not fully pronounced, much like the final ᒄ. (Spelling Manual,
2004)

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

383

Large syllabic for the final u
ᓃᔓ niishu
ᓂᔥᑐ nishtu
ᓂᔮᔪ niyaayu

In a few number words a final 'u' sound may be heard, but there
has been a decision not to write it. (Spelling Manual, 2004)

The initial syllable of a word is also a spelling difficulty since it is
sometimes an unpronounced syllable:

You hear and want to write... Write...
ᑖᐤ taau iᐦᑖᐤ ihtaau
ᑕᑯn takun iᐦᑕᑯn ihtakun
ᑑᑕm tuutam iᐦᑑᑕm ihtuutam
ᔥᑐᑎn shtutin aᔥᑐᑎn ashtutin
ᐧᑫᐤ kweu isᐧᑫᐤ iskweu

Because of pronunciation, people often shorten the ᓂ ni at the
beginning of a word written fully.

Write… Not…
ᓂᑐᐦᑯᔨn nituhkuyin nᑐᐦᑯᔨn ntuhkuyin
ᓂᒋᒄ nichikw nᒋᒄ nchikw
ᓂᑑᐦᐆ nituuhuu nᑑᐦᐆ ntuuhuu

Some of the number words are pronounced two ways, with or
without ᓂ ni at the beginning.

You hear and want to write... You also hear and write...
ᑯᐧᑖᔥc kutwaashch ᓂᑯᐧᑖᔥc nikutwaashch
ᔮᓈᓀᐤ yaanaaneu ᓂᔮᓈᓀᐤ niyaanaaneu

Final u not written
ᒥᑖᐦt mitaaht

 ᔭᑯᔖp peyakushaapפ

 MARIE-ODILE JUNKER AND TERRY STEWART

384

Older way of spelling words, still used
 Because the Cree orthography has changed, some people
still remember and continue to use the old way of spelling words.
Common problems are:

• the old roman orthography o replaced by syllabic ᐧᐋᐤ waau.
• uncertainty about i and yi
• old yuu as verb ending, instead of modern indication of verb stem

morphology yiu (Northern dialect)

Examples:
o/waau: nishto > ᓂᔥᐧᑖᐤ nishtwaau
ei/eyi: iᑌiᒣᐤ iteimeu > iᑌᔨᒣᐤ iteyimeu
ai/ayi: ᐋiπᑌᐤ aaipiteu > ᐋᔨπᑌᐤ aayipiteu
yuu/yiu: πᓱπᔫ pisupiyuu > πᓱπᔨᐤ pisupiyiu

The old orthography often did not include small syllabic symbols.
As discussed above, these too might be missing if people use the
old spelling.

French spelling of words
 Many Cree people today are literate in French. Because the
roman orthography for Cree is based on an English spelling of
phones, common mistakes include:

• tch for ch [ʧ]
• dj for ch [dʒ]
• j for sh [ʒ]
• ch for sh [ʃ]

Inflected words
 A set of different problems arises when considering
inflected words. A dictionary cannot contain all inflected forms of
all nouns and verbs; instead, it generally will only contain verbs
and nouns in their standard citation form. For example, the
dictionary citation form for verbs in East Cree is the third person
indicative neutral. This means that even if someone correctly spells
a fully conjugated verb, avoiding all of the above potential spelling

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

385

errors, it will still not be found in the dictionary. We cannot expect
all users to know in advance what the dictionary citation form is.
Therefore one goal of our search engine was to also work on
inflected words.

THE SOLUTION

 Our goal was to allow users to type Cree words using
possible alternative spellings and still be successful in finding the
words for which they were searching. As such, we also wanted
users to develop an awareness that their spelling was not standard.
 We thus had to build an extended search engine that
allowed a different spelling than the one used in the dictionary. At
the same time, we had to keep the regular search and make the
extended search available only after a regular search was
unsuccessful. Another constraint was to limit the number of results
to a small number, and allow them to grow incrementally, with
user control.
 To do this, we could not make use of previously existing
spelling software. Although there has been extensive research and
development in spelling correction tools for languages such as
English, these tools are built around common English misspellings,
and so would not give suitable suggestions if applied to Cree.
Furthermore, the complex inflections found in the Cree language
are not seen in English. Tools developed for other mainstream
languages (such as German, which does exhibit complexities such
as compound words) are highly specific to that language, and are
developed via extensive linguistic analysis as well as examining
the error patterns of a large user base. This is not a feasible
approach for Algonquian languages.
 For simplicity, our current system is divided into two parts.
First, we have the standard dictionary search system. This is
meant to be used much like a normal dictionary, but it is capable of
handling common misspellings of words, suggesting words in the
dictionary that are “close to” what the user has entered. Second,
we have a separate system for identifying inflected words. This

 MARIE-ODILE JUNKER AND TERRY STEWART

386

allows, for example, a Cree speaker to type in an inflected verb,
and it will indicate the stem and the verb form. This verb search
system is also capable of handling common misspellings, and
indeed uses the same algorithms as the dictionary search3.
 The following screen shows an example of an unsuccessful
search using the standard dictionary. Here, the user has searched
for napeu, which is an incorrect spelling of naapeu 'man', and so
no results are found. The system then suggests that they try a
“relaxed” search, which incorporates the alternate spellings.

The resulting relaxed search shows two possible options, naapeu
and naapeuu. Importantly, it does not show napet 'alas', which is
orthographically similar to napeu, but does not represent a
common spelling error.

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

387

 The same search could have been performed in syllabics,
with the user omitting a dot on top of the first syllabic character
(ᓇפᐤ instead of ᓈפᐤ). Since there is an exact correspondence
between the roman and syllabic forms, we are able to convert from
one format to the other. The algorithm we have developed uses the
roman form, with additional conversions for syllabics.
 The separate verb inflection search system follows a similar
approach, although its interface is not yet as developed as the one
for the dictionary search. An inflected verb is entered into the
search box using the roman orthography. The result provides a list
of suggestions for the stem of the verb (sorted in order of
likelihood, given common spelling patterns). It also lists what
form of verb has been provided. In the following example, the
incorrectly spelled verb chiwapimaaniwicha has been entered. The
system has correctly identified the verb stem as waapimaau 'to
see', but it further noted that it could also be a highly misspelled

 MARIE-ODILE JUNKER AND TERRY STEWART

388

version of waapihwaau 'to sweep away'. The verb form is
identified as VTA in the 21p-3p person, and the best match is to
paradigm 02, followed by paradigm 014. It should be noted that
the system has correctly identified paradigm 02, even though the
user has not provided the ishki particle. Beside this information,
an example of this verb inflection is given, to aid understanding.
This is always to an attested example in our verb paradigm
database, which contains an example of each verb stem type in
each paradigm.

The verb search system also provides a visual display of the
example verbs in the database. This is viewable in either roman or
syllabics.

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

389

RELAXED DICTIONARY SEARCH

 The basis of both the dictionary search and the inflected
verb search is what we refer to as a “relaxed” search. This allows
us to find a particular word even if it has been misspelled (i.e. it
allows for a more “relaxed” approach to spelling, as opposed to a
standard dictionary lookup where the word one is looking for must
be spelled correctly). To implement this system, we adapted and
combined two common computational methods for comparing
spellings of words, Levenshtein Distance (the orthographic
similarity between words) and Phonetic Matching (indicating that
certain phonemes are 'closer' to each other than other phonemes).
These are tools common to commercial-grade spell-checking
systems, but, as we show, they can be used without the extensive
research and development commercial systems require.

Levenshtein distance
 The main measure for comparing two sequences of letters
(i.e. words) to determine how different they are is based on the
simple intuitive measure of counting how many letters are
different. For example, abcde and abxye have three letters in
common and two letters that are different. The c is changed to an
x, and the d is changed to a y. We can thus reasonably say that the
distance between these two sequences of letters is 2. This sense of
difference is known as the Hamming Distance (Hamming, 1950).
However, with this approach it is unclear how to treat the
difference between abcde and bcde. Here, we have deleted one
letter, and the naïve Hamming Distance approach would indicate
that all the letters are different (the a has changed to a b, the b has
changed to a c, and so on).
 A more complex algorithm for comparing these sequences
of letters is the Levenshtein Distance (Levenshtein, 1965). Here,
instead of considering only substitutions of letters, we also
consider insertions and deletions. The algorithm identifies the
minimum number of edits (substitutions, insertions, and deletions)

 MARIE-ODILE JUNKER AND TERRY STEWART

390

which will convert the one word to the next. This lets us say that
the difference between abcde and bcde is 1 (a single deletion), and
the difference between pzzel and puzzle is 3 (inserting a u, inserting
an e at the end, and deleting the earlier e).
 The actual implementation details of the Levenshtein
Distance algorithm are beyond the scope of this paper. However,
it should be noted that this is a common computer science tool, and
most programming languages have freely available, highly
optimized versions of the algorithm, thus making it a very fast
calculation.
 It is possible to use Levenshtein Distance on its own as a
spell-checking system, by simply finding all the words in the
dictionary that have a difference of 1 or 2 (or some other limit)
from the word a user has entered. However, this would be a very
strict system which does not make use of the knowledge of
common errors in the language. For example, a user typing napew
will find a closer match to napet (at a distance of 1) than to naapeu
(at a distance of 2). To make use of this sort of knowledge, we
need to enhance the system with Phonetic Matching.

Phonetic Matching
 While the Levenshtein algorithm is highly efficient at
determining the difference between two words, it is completely
language and encoding neutral. There is no sense in which a b and
a p are more similar than, for example, a q and a i. Any difference
of any sort is considered to have an equivalent value, whether it be
changing a vowel to a consonant or simply changing the length of
the vowel. What is needed is a language-dependent system to
allow for the specification of the importance of various changes.
 One existing system that has received wide usage in North
America is Soundex (Russell, 1918). Since 1920, this has been
used in the U.S. Census to manage the task of finding similarities
between people's last names. This was specifically designed so
that changes such as Smith to Smyth would be ignored by the
census system. This was accomplished be defining a way of

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

391

encoding any last name into a sequence of numbers. This
encoding was done with the following rules:

1. Convert these letters to the number 1: bfpv (labials)
2. Convert these letters to the number 2: cgjkqsxz (gutterals and sibilants)
3. Convert these letters to the number 3: dt (dentals)
4. Convert these letters to the number 4: l (lateral liquid)
5. Convert these letters to the number 5: mn (nasals)
6. Convert these letters to the number 6: r (retroflex liquid)
7. Remove any number that is beside an identical number
8. Remove all the following letters: aehiouwy

 The result is a numerical code representing a particular
name. Both Smyth and Smith would become 253, as would Smit,
Smithe, Smithy, Smythe, and so on. By organizing the census
information by these Soundex codes, all of the data for these
related names would be placed in the same location. However,
other names such as Knot would also have a code of 253. In the
official Soundex algorithm, this is partially dealt with by keeping
the first letter of the name (which seldom changes), and a similar
problem with long names is dealt with by only considering the first
4 digits. This results in the official Soundex code for Smith being
S530.
 Unfortunately, such an approach is perhaps too general for
our situations. Soundex leads to exact matches for all of Powers,
Pierce, Price, Perez, and Park. We need a system which is
somewhat intermediate between these two approaches. With
Levenshtein Distance, any change is equivalent. With Soundex,
any vowel change and any consonant change within the groups
identified above is completely ignored. A more useful system
would allow for the specification of intermediate differences.
 An additional problem of the Soundex system is that it was
developed for English pronunciation and spelling. Some of its
spelling mistakes are ones that we would want a Cree dictionary
search system to completely ignore. We want our search system to
be customizable to East Cree, and ideally to any other language.

 MARIE-ODILE JUNKER AND TERRY STEWART

392

Customization
 In Section A, we described a variety of common spelling
mistakes within the East Cree language. We used these to create a
list of aspects of Cree spelling to include into our search system.
We further refined it by distinguishing between spelling mistakes
to completely ignore and spelling mistakes to partially ignore. In
the first category (completely ignore), we included very common
spelling mistakes and what can be considered alternate spellings.
In the second category (partially ignore) we included what we
considered to be greater violations of the orthography
 For spelling differences that are completely ignored by the
dictionary search system, we chose:

−voiced versus voiceless consonants (writing a b instead of a p, a d instead of a

t, etc.)
−French versus English spelling differences (j instead of sh, f or ph instead of v)
−older spelling systems (o instead of waau, ei instead of eyi, ai instead of ayi)
−missing h in a word
−vowel length (a instead of aa, i instead of ii, etc.)

 The first three of these spelling differences are
uncontroversial; they simply indicate common alternate spellings,
and do not lead to ambiguity. Indeed, they might be considered
correct alternate orthographies, rather than actual spelling
mistakes. The last two (missing h and vowel length) are clearly
actual spelling errors. However, they occur commonly enough that
we have chosen to treat the difference between a and aa, or having
an h and not having an h as no difference at all. That is, when the
user is searching for a word in the dictionary, and the word they
have typed in does not exist, then the system should proceed by
ignoring any differences involving vowel length, the presence of a
small h, voiced versus voiceless consonants, and so on.
 This decision will certainly lead to a slight over-
generalization by the search system, due to the presence of certain
minimal pairs within the Cree language. For example, a user
searching for siituu but incorrectly spelling it situ would receive
equally strong matches for siituu and siihtuu. However, this sort of

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

393

scenario at worst gives the user two options to choose from, and so
we feel it is acceptable.
 Certain other spelling errors, while still common, were
deemed to not be completely ignorable. Changes in vowel quality
or the loss of a w are common, but we should not go as far as to
treat these differences as no difference at all (as we did with vowel
length). However, these spelling mistakes are clearly not as large
an error as changing a vowel to a consonant, or forgetting a whole
letter. We thus developed a list of spelling mistakes that should be
treated as half of an error. Inspired by the Soundex system, we
also included relevant Cree phonemic-based errors and typos:

−vowel quality (i instead of a, u or e)
−missing w
−mistaking nasals (m instead of n)
−mistaking labials (f instead of p)
−typing tch for ch [�]
−mistaking s for sh [�]

 We now have two lists of common spelling errors, one set
we wish to treat as if they are not differences, and one set we wish
to treat as if they are half a difference (in terms of the Levenshtein
system). To implement this, we needed an algorithm that allows
for both an efficient computation of the total difference, and allows
us to easily adjust and modify these two lists of differences.
 This last point is worth further highlighting. By allowing
these two lists of common spelling errors to be easily modified, we
are in fact making our search system customizable to different
languages. The only aspect of our system which is specific to the
East Cree language is our choice of errors. By adjusting these lists,
we can make the system suitable for different languages.
Furthermore, we can also make fine-tuning adjustments to these
rules as more data are gathered on common East Cree search
problems.

 MARIE-ODILE JUNKER AND TERRY STEWART

394

Algorithm
 Given the extensive research that has gone into the
Levenshtein Distance algorithm, making it fast and efficient, we
decided to base our system around it. However, Levenshtein has
no method for indicating half differences. This led us to develop
the following algorithm.
 First, we defined two functions which modify a given word
based on the two lists of spelling variations identified in the
previous section. These are called relax1 and relax2. Each of these
is meant to take a given word and produce an output which is
guaranteed to be identical for any two words which only differ by
errors indicated in the relevant list. For example, relax1 will
transform naapeu, napeu, nabeu, naabeu, naahbeu, and so on into
napeu. As a further example, relax2 would transform napeu,
mapiu, nepeu, nupiu, napheu, mipweu, and so on into nøpøø. It
should be noted that we are using ø to indicate a neutral vowel.
 We now create two new lists of words, based on the words
in the original dictionary. The first list (words1) consists of the
result of running every word in the dictionary through relax1 only.
The second list (words2) is formed by running every word through
both relax1 and relax2. For example,

Original Words1 Words2

naapeu napeu nøpøø

napet napet nøpøt

napeuu napeu nøpøø

iskweu iskweu øskøø

Now suppose a user enters a search word which is not in the main
dictionary list. We first transform the word into search1 (via
relax1) and search2 (via relax1 and relax2). Next, we measure the
Levenshtein distance between search1 and all of the words in
words1. This gives us a difference value that ignores any of the
changes identified in the first list of spelling mistakes. We then
measure the Levenshtein distance between search2 and all of the

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

395

words in words2. This gives us a difference value that ignores any
of the changes identified in both of the spelling mistake lists. To
attain our final difference value, we simply take the average of
these two differences. The result is a value which treats the
differences in the second spelling mistake list as only half as
important as the differences in the first list.
 To optimize this process, we note that we do not need the
values for every single item in the dictionary. Instead, there should
be some threshold of error after which the word should be ignored.
For example, when searching for close matches for napeu, the
word iskweu would have much too large a difference to be
considered. Most Levenshtein distance algorithms allow for the
specification of a threshold of error above which the word should
be ignored. This is usually specified relative to the length of the
word (so as to allow for more errors in longer words). Thus, a
threshold of 0.2 would indicate that at most one error (i.e. one
insertion, deletion, or replacement) is allowed for every 5 letters in
the original word.
 If we specify this threshold, we can greatly speed up the
search process. Suppose we only want to find words which are
within a threshold 0.2 of the word the user has entered. To do this,
we first do our initial measurement of the Levenshtein distance
between search1 and all the words in words1 using a threshold of
(0.2*2)=0.4. The reason we choose a threshold of 0.4 is that this
value is going to be averaged with the result of the Levenshtein
difference for the second list, and if the value for the first list is
above 0.4, then the combined average cannot be below 0.2. This
gives us a smaller set of words to work with for the second stage.

The following table shows an example of searching given the entry
napeu:

 MARIE-ODILE JUNKER AND TERRY STEWART

396

As we can see from this table, the dictionary words naapeu and
naapeuu are determined to have a smaller average difference than
napet. This is a desirable result since it is not reasonable to believe
that a user means napet if they have entered napeu.
 Given the simplicity of the above example, we can see that
the first stage of the algorithm (Difference1) is able to determine
that naapeu and naapeuu are closer matches than napet. In more
complex situations, the second stage of the algorithm is needed.
This can be seen in the following table, showing an example of
searching given the entry mwiikw:

Original Words1 Difference1

mwikw
Words2 Difference2

møk
Average
Difference

mwaakw mwakw 0.2 møk 0 0.1

wiikw wikw 0.2 øk 0.33 0.266

amihkw amikw 0.4 ømøk 0.33 0.366

maak mak 0.6 møk 0 0.3

In this case, the first stage (Difference1) indicates that both
mwaakw and wiikw are identically close to mwiikw (a difference of
0.2). The second stage (Difference2) finds that mwaakw is much
closer than wiikw (a difference of 0 versus 0.33). This is because
the second stage treats a consonant drop as a worse violation than a
vowel quality change. However, the second stage is also
somewhat over-zealous, as it indicates that maak is just as close to
mwiikw as mwaakw is. For this reason, we average the results of

Original Words1 Difference1
napeu

Words2 Difference2
nøpøø

Average
Difference

naapeu napeu 0 nøpøø 0 0

napet napet 0.2 nøpøt 0.2 0.2

naapeuu napeu 0 nøpøø 0 0

iskweu iskweu 0.8 øskøø 0.6 0.7

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

397

Difference1 and Difference2, resulting in mwaakw being correctly
chosen as the most likely word.

Implementation
 Since our system is meant to be easily customizable (both
for adjusting the results to take into account different sorts of
spelling errors and for switching to completely different
languages), it is worthwhile to describe the actual software
implementation of the two functions relax1 and relax2 which are at
the heart of the algorithm.
 The first function, relax1, is meant to take a given word
and modify it so that all of the spelling variations described in our
first list (errors which should be considered to have a difference of
0) disappear. This function, implemented in the Python
programming language, looks like this:

def relax1(word):
 word=word.replace('aa','a') # vowel length
 word=word.replace('ii','i') # (or top dot on syllabics)
 word=word.replace('uu','u')

 word=word.replace('b','p') # voice/voiceless consonants
 word=word.replace('d','t')
 word=word.replace('g','k')
 word=word.replace('z','s')
 word=word.replace('v','f')

 word=word.replace('j','sh') # french/english spelling
 word=word.replace('ph','f')
 word=word.replace('tch','ch')
 word=word.replace('dj','ch')

 word=re.sub('(?<!c|s|t)h','',word) # remove 'h' (except in ch,
 # sh, and th)
 word=word.replace('o','wau') # older spellings
 word=word.replace('ei','eyi')
 word=word.replace('ai','ayi')

 return word

 MARIE-ODILE JUNKER AND TERRY STEWART

398

These are all commands which replace all instances of a particular
pattern with another pattern. With one exception, these are simple
patterns, such as replacing aa with a. A more complex pattern is
used in the one situation where we want to remove all h's except
for the ones after a c, s, or t. This is accomplished using a regular
expression (a powerful matching system built in to most
programming languages).
 The second function, relax2, carries out the elimination of
the remainder of the spelling changes.

def relax2(word):
 word=word.replace('i','ø') # merge all vowels into ø
 word=word.replace('u','ø')
 word=word.replace('e','ø')
 word=word.replace('a','ø')

 word=word.replace('m','n') # merge nasals (Soundex inspired)
 word=word.replace('f','p') # merge labials (Soundex inspired)

 word=word.replace('ch','sh') # french/english spelling

 word=word.replace('sh','s') # East Cree dialectal difference

 word=word.replace('w','') # remove w's (or left dot on syllabics)

 return word

 By merely adjusting these two functions, the entire search
system can be adjusted for different conditions.

VERB INFLECTION SEARCH

 While the relaxed search system described in the previous
section makes searching for words in the dictionary a much more
forgiving process, this requires that the correctly spelled word be
in the dictionary. However, for Cree verbs, this is an impossibility
due to the large number of inflected forms for each verb. Instead,
only the basic stem form of the verb is normally given. This

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

399

means that if a user searches for “nimishikaan” (I arrive by canoe),
this will not be found, since the dictionary only contains the form
“mishikaau”.
 To address this difficulty, we have developed a system that
can analyze the entered verb, identify the stem, and identify the
verb form. This system makes use of the relaxed search, so it is
able to identify even misspelled verbs. It provides a list of possible
stems and verb forms, sorted so that the most likely candidates
(taking into account Cree spelling patterns) are given first.

Verb paradigms database
 Since this system must identify verb forms, it must have an
example of each possible Cree verb form. This is provided by the
Verb Paradigms Database5. This is a standard Toolbox database
that provides an attested example of each inflection for each
paradigm and stem type. For example, the entry for nimishikaan
contains the following information:

Form nimishikaan
Part of Speech VAI
Paradigm 01
Person 1
Stem Type long aa
Canonical Form mishikaau
Gloss I arrive by canoe

 To facilitate the search system’s algorithm, one further
field was added to the database. This was meant to mark the prefix
and suffix information that identifies the inflected verb form. For
nimishikaan, this would be marked as

ni mishik aan

Note that from a morphological perspective, the stem is mishikaa-
and the suffix is -n. Our decomposition does not always follow
Algonquian word formation rules but rather often includes in what
we call the 'suffix' the final vowel or consonant of the stem. The

 MARIE-ODILE JUNKER AND TERRY STEWART

400

idea here is that the prefix ni and the 'suffix' aan are what the
search system should look for when determining whether a verb is
in this paradigm. These should be as long as possible while still
being common to all verbs following this example. In this case,
this means that all VAI verbs that are of the long aa stem type will
start with “ni” and end with “aan” when inflected as paradigm 01
in person 16. This will be used by the search algorithm to identify
other verbs in this form. It should be noted that since the algorithm
uses the relaxed search system, it will still identify verbs correctly
even if the prefix and/or suffix are slightly misspelled.

Determining the paradigm
 Given the database of verb paradigms described in the
above section, the search system must first identify which
paradigms could have been intended by the user. This is done by
examining the beginning and ending of the entered verb and
matching them to all of the suffixes and prefixes in the paradigm
database. This is done by going through the complete list of
paradigms and using the relaxed matching system (as described
previously).
 For example, if the misspelled word nipimipahtaanawaa is
entered, then the system would find a very close match for the
paradigm that starts with ni and ends with aanaawaa (VAI,
paradigm 02, person 1, long aa stem). However, it will also find a
close match for other paradigms, some of which are shown in the
following table.

Part of Speech Paradigm Person Stem

Type
Prefix Suffix

VAI 02 1 long aa ni aanaawaa
VTI 02 1 im ni aanaawaa
VTA 02 1-3 consonant ni aawaa
VAI 03a 3p long aa aahtaawaau

Given this approach, we can find a small set of potentially
matching paradigms. This list can be made longer or shorter
depending on how close the matches are required to be. For

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

401

example, the last paradigm shown in the above list matches the
expected suffix aahtaawaau, even though the original word
entered was nipimipahtaanawaa.

Determining the verb
 Given this list of potential matching paradigms, the
algorithm must next attempt to determine the actual verb stem
intended. To do this, we make use of the same Cree dictionary as
in the normal relaxed search dictionary system. Recall that this
dictionary only contains verbs in their standard canonical form.
 To determine the intended verb, the algorithm starts with
the portion of the entered word that is left over once the suffix and
prefix are removed. It then attempts to reconstruct the correct
form. This is done by examining the original paradigm example.
For example, the paradigm example for ishki nimishikaanaawaa
contains the following information

Form ishki nimishikaanaawaa
Part of Speech VAI
Paradigm 02
Person 1
Stem Type long aa
Canonical Form mishikaau
Gloss It seems that I am arriving by canoe
Prefix ni
Suffix aanaawaa

The search algorithm determines that in order to convert
nimishikaanaawaa (the inflected form) to mishikaau, we must
remove the prefix and suffix, and then add aau. This same rule
can then be applied to the text that the user has entered. For the
misspelled word nipimipahtaanawaa (given in the previous
section), once the above paradigm example is identified as a
potential match, the search system attempts to identify the verb by
following the same rule: the prefix and suffix are removed, and -
aau is added. This results in pimipahtaau. This text can then be

 MARIE-ODILE JUNKER AND TERRY STEWART

402

used to search the standard dictionary, and the closest match is
pimipihtwaau 'to run carrying something'.
 This process must be performed for each of the paradigm
examples identified as potential matches. Each one may provide a
different possible verb. For example, as shown in the previous
section, another possible paradigm match for nipimipahtaanawaa
is as follows:

Form ishki nitihtutaanaawaa
Part of Speech VTI
Paradigm 02
Person 1
Stem Type im
Canonical Form ihtutim
Gloss It seems that I am doing it
Prefix ni
Suffix aanaawaa

For this case, the inflected form is converted to the canonical form
by removing the prefix and suffix and then adding im. Thus, if this
algorithm is applied to nipimipahtaanawaa, we create the potential
stem pimipahtim. Searching through the dictionary for a matching
verb results in piimipitim 'to turn something'.
 Following this process for each of the potential paradigm
matches gives a long list of potential verbs and verb forms. This
list can be sorted based on the closeness of the match (the number
of “errors”, as determined using the relaxed matching algorithm
discussed above). This is what our verb search system does, and
then presents the user with the resulting sorted list.

Ongoing work
 Our verb inflection search system is still in its initial stages.
We are currently experimenting with different ways of presenting
the resulting information and incorporating the verb dictionary into
the on-line dictionary (http://dict.eastcree.org)
 We have also been working on a special addition to the
algorithm to deal with initial change. In some paradigms, the initial

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

403

syllable of the verb stem is always changed from its base form.
Some paradigms, like the Conjunct Indicative (#11) uses initial
change for questions. Which other paradigms allow for initial
changes still needs to be fully documented. Forms with initial
change do not depend on stem information, found in the Verb
Paradigms database, but rather on phonological rules affecting the
intial of any verb found in the (word) Dictionary. To allow
matching of a changed verb with the dictionary citation form,
changed forms must be either entered manually into the (word)
Dictionary, or generated algorithmically. We are currently
exploring the latter solution, by generating changed forms for the
15 171 verbs contained in the East Cree dictionary (Northern
dialect), and checking with speakers whether the changed forms so
generated matches their intuition.
 Finally, although our system is capable of handling the
most common preverbs like past chiih, volitional wiih, or conjunct
preverbs like aah or kaa, we wish to expand this capability to
handle the full set of Cree preverbs. But this requires additional
documentation work on possible co-ocurrences between preverbs
and paradigms.

ADAPTING THESE TOOLS TO THE INNU LANGUAGE

 Our search tool can be adapted to other Algonquian
languages, if common spelling errors or alternative spelling usages
are well identified. We adapted the relaxed search engine to the
Innu language recently7. For example, Innu standard orthography
does not indicate vowel length, but has similar voice/voiceless
confusion problems. Without going into as many details, we give
below the two functions relax1 and relax 2, implemented in the
Python programming language, as we defined them for the Innu
on-line dictionary (www.innu-aimun.ca/lex), to illustrate how such
an adaptation is possible.

 MARIE-ODILE JUNKER AND TERRY STEWART

404

def relax1(word):

 word=word.replace('b','p') # voiced/voiceless consonants
 word=word.replace('d','t')
 word=word.replace('g','k')
 word=word.replace('z','s')
 word=word.replace('j','sh')
 word=word.replace('v','f')

 if word.endswith('w'): word=word[:-1] # forget final raised u

 word=re.sub('(?<!c|s)h','',word) # remove 'h' (except in ch, sh)

 return word

def relax2(word):

 word=word.replace('i','a') # mixing up short vowels
 word=word.replace('u','a') (includes ai->ei, ei->ai, etc)
 word=word.replace('e','a')

 word=word.replace('nat','nt') # Forget vowels between n and t
 word=word.replace('tan','tn')

 if word.endswith('uan'): # write -un for -uan at end of words
 word=word[:-3]+'un'

 # forget h before a consonant
 # Note that this also handles st->sht, sp->shp, sk->shk
 # Also note that relax1 currently gets rid of any 'h's that aren't
 # in ch or sh
 word=re.sub('h(?![rtpshklcnm])','',word)

 word=word.replace('ss','s') # handles writing 's' instead of 'ss'

 word=word.replace('ch','sh') # also handles tsh->tch
 word=word.replace('tsh','ts')

 return word

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

405

Similarly to what we did for the Cree verb dictionary, the Innu
verb dictionary (adapted from Baraby, 2004) will include the Innu
search engine above.

CONCLUSION

 We have shown here how we approached the development
of a search engine for the Eastern James Bay Cree dictionary on
the web (dict.eastcree.org) in order to allow spelling mistakes or
creative spelling. We demonstrated that this tool was in turn easily
adaptable for a neighbouring Algonquian language, namely Innu.
We also showed how it was used to help relate inflected forms to
citation forms in a dictionary.
 To build a successful tool, we adopted an interdisciplinary
approach, combining descriptive linguistics, usage observation and
computational creativity. Rather than just copy Soundex or other
English-biased approaches to spell-checking, we had to first look
at the rules of the Cree language. The fact that it uses a syllabic
writing system offered an additional challenge, solved by
implementing systematic conversions from roman to syllabic
orthographies. In order to customize our search engine for Cree, a
good linguistic description of the language was necessary, as well
as observations of spelling patterns of Cree users. On the
computing side, we combined two approaches to spell-checking:
measuring the difference between the word typed and the words in
the dictionary, and phonetic matching. The originality of our
computational system is in allowing half-errors in Levenshtein
differences, allowing for more accurate results. Our algorithm is
fast and can be easily added to other existing systems, because its
basic components exist in most modern programming languages.
 Using our results, other kinds of research tools could be
created. For example, a system that, given a text of unknown
provenance, could estimate the probability that it is a sample of
East Cree that could be made available on the eastcree.org website,
so that archivists, historians, genealogists, lawyers, and other
researchers could copy and paste unidentified text into a box a

 MARIE-ODILE JUNKER AND TERRY STEWART

406

click a 'test' button. The same system could be used as the basis for
a more general Algonquian language identifier.8
 The question remains, however, as to whether our tools will
be used and useful in accomplishing our goal in helping preserve a
minority language. For that we can study the patterns of usage of
the dictionary on the web, recording the language of queries. So
far, data on on-line usage indicate that the Dictionary Database is
queried around 36% of the time in Cree, with an average of over
2,000 queries per month. The charts in Appendix B give the usage
data for the dictionary for the year 2007 and for an earlier period
(2005, 2006). Usage of the on-line Cree Dictionary has gone up in
absolute terms from slightly over 11,000 queries in 2006 to nearly
25,000 queries in 2007. Queried languages are stable, with the
addition of French since the publication of the French version in
April 2007. An almost equal number of queries are using the Cree
syllabics and the Cree roman orthography. Our next step will be to
observe how and when the relaxed search is being used. For that
we are starting to record data on the relaxed search, in addition to
data on the regular queries per language.
 We can expect that the more the language is endangered,
the more the searches will be performed in the colonial languages
(English or French). However, when a word is searched for in the
native language, the discouragement that users experience in not
finding the word they are looking for could even accelerate the
dominance of a colonial language. Thus, a tool that allows
alternative spelling, like the one described here, should help
balance this tendency for dominance.
 As we do not wish our electronic dictionaries to end up
having the reverse effect of the one anticipated (i.e. accelerating
language loss instead of promoting retention) we hope that the tool
described here will have a positive impact for language
preservation. We also hope that this first-of-its-kind search engine
will serve as a model for dictionaries of other Algonquian,
endangered or minority languages.

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

407

APPENDIX A: EASTERN JAMES BAY CREE SYLLABIC CHART

 Finals

 e i ᐄ o ᐆ a ᐋ ᐤ ᐦ
 E i ii u uu a aa u h
 ᐧe ᐧi ᐧᐄ ᐧo ᐧᐆ ᐧa ᐧᐋ
 We wi wii wu wuu wa waa
 π ᐲ ᐳ ᐴ ᐸ ᐹ ᐧᐹ p פᐧ פ
pe pwe pi pii pu puu pa paa pwaa p
ᑌ ᐧᑌ ᑎ ᑏ ᑐ ᑑ ᑕ ᑖ ᐧᑖ t
te twe ti tii tu tuu ta taa twaa t
ᑫ ᐧᑫ ᑭ ᑮ ᑯ ᑰ ᑲ ᑳ ᐧᑳ k ᒄ
ke kwe ki kii ku kuu ka kaa kwaa k kw
ᒉ ᐧᒉ ᒋ ᒌ ᒍ ᒎ ᒐ ᒑ ᐧᒑ c
che chwe chi chii chu chuu cha chaa chwaa ch
ᒣ ᐧᒣ ᒥ ᒦ ᒧ ᒨ ᒪ ᐧ m
me mwe mi mii mu muu ma maa mwaa m
ᓀ ᐧᓀ ᓂ ᓃ ᓄ ᓅ ᓇ ᓈ ᐧᓈ n
ne nwe ni nii nu nuu na naa nwaa n
ᓓ ᐧᓓ ᓕ ᓖ ᓗ ᓘ ᓚ ᓛ ᐧᓛ l
le lwe li lii lu luu la laa lwaa l
ᓭ ᐧᓭ ᓯ ᓰ ᓱ ᓲ ᓴ ᓵ ᐧᓵ s
se swe si sii su suu sa saa swaa s
ᔐ ᐧᔐ ᔑ ᔒ ᔓ ᔔ ᔕ ᔖ ᐧᔖ ᔥ
she shwe shi shii shu shuu sha shaa shwaa sh
ᔦ ᐧᔦ ᔨ ᔩ ᔪ ᔫ ᔭ ᔮ ᐧᔮ y
ye ywe yi yii yu yuu ya yaa ywaa y
ᕃ ᐧᕃ ᕆ ᕇ ᕈ ᕉ ᕋ ᕌ ᐧᕌ r
re rwe ri rii ru ruu ra raa rwaa r
ᕓ ᐧᕓ fi ᕖ ᕗ ᕘ ᕙ ᕚ ᐧᕚ f
ve vwe vi vii vu vuu va vaa vwaa v, f,
ᕞ ᐧᕞ ᕠ ᕢ ᕤ ᕥ ᕦ ᕧ ᐧᕧ ᕪ
the thwe thi thii thu thuu tha thaa thwaa th

 MARIE-ODILE JUNKER AND TERRY STEWART

408

APPENDIX B: QUERY DATA

Query Languages 2007 (Jan-Dec)
Total 24757 100%
English 14159 57%
Roman 4344 18%
Syllabic 4496 18%
French 1758 7%

English

Roman Syllabic

French

Query Languages 2007

Query Languages 2006 (Jan–Dec)
Total 11338 100%
English 8270 73%
Roman 2055 18%
Syllabic 1013 9%

English

Roman

Syllabic

Query Languages 2006

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

409

Query Languages 2005 (May-Dec)
Total 7836 100%
English 5038 64%
Roman 1699 22%
Syllabic 1099 14%

English

Roman

Syllabic

Query Languages 2005

ENDNOTES

1 This work was made possible through a SSHRC grant (# 856-2004-1028).
Adaptation to Innu was partially subsidized by SSHRC CURA grant (# 833-
2004-1033). We wish to thank the audiences at the 37th and 39th Algonquian
Conferences, as well as Bill Jancewicz, Marguerite MacKenzie, Rand Valentine
and our anonymous reviewers for comments and suggestions. Thanks to Fred
Mailhot and Delasie Torkornoo for help in retrieving the Cree Dictionary usage
statistics. Chinaskumitinwaau to the many Cree speakers, to Cree program staff
members and to our students for testing the relaxed search. The adaptation to
Innu would not have been possible without José Mailhot's expertise with Innu
language and orthography. All remaining errors are ours.
2 The East Cree syllabic fonts are available at resources.eastcree.org. A chart
explaining the roman-syllabic correspondance is given in Appendix A.
3 We have so far focussed on inflected verbs rather than inflected nouns, for
three reasons: First, verbs are by far the largest part of the dictionary (and also
the most frequent in language use). Second, noun inflection usually consists of

 MARIE-ODILE JUNKER AND TERRY STEWART

410

fewer syllables than verb inflection and is quite well handled already by the
search engine based on spelling rules. Third, dependent nouns and inflected
pronouns have been given entries in the Cree dictionary. In the future, we plan
to include the rules for possessed nouns into our search.
4 We are using the numbering system for paradigms developed by MacKenzie
(1992) that allows comparison of paradigms between the Cree-Innu
(Montagnais-)Naskapi dialect continuum.
5 The verb paradigm documentation for East Cree was started by Marguerite
MacKenzie (1980), who then worked for many years with the Cree School
Board to document the verb forms, leading to the production of several
unpublished work copies over the years. The Database structure in Toolbox was
modelled after the one Bill Jancewicz developed for the neighboring language
Naskapi. The Verb paradigm database (Northern) used here is the latest version
(2008) of the one by Junker, MacKenzie and Salt (2002).
6 Combination with preverbs to which the personal prefix attaches are dealt with
as well.
7 José Mailhot, who has been involved with the entire standardization process of
the Innu orthography, provided us with a list of common difficulties encountered
by Innu writers.
8 We are grateful to an anonymous reviewer for this suggestion.

REFERENCES

Baraby, Anne-Marie. 2004. Guide de Conjugaisons en langue innue. 2. Sept-

Iles: Institut culturel et educatif montagnais.
Hamming, Richard W. 1950. Error-detecting and error-correcting codes. Bell

System Technical Journal 29.2:147-160.
Junker, Marie-Odile (ed.) 2000-2008. The East Cree language web.

www.eastcree.org.
Junker, M.-O., M. MacKenzie, L. Salt, A. Duff, D. Moar & R. Salt (eds). 2007-

2008. Dictionnaire du cri de l’Est de la Baie James sur la toile: français-
cri et cri-français (dialectes du Sud et du Nord). http://dictf.eastcree.org/

Junker, M.-O., M. MacKenzie & L. Salt. 2002. East Cree verb paradigms
(Northern dialect): A database in Toolbox, complete with sounds. Last
revised in January 2008. Unpublished.

Levenshtein, Valdimir I. 1965. Binary codes capable of correcting deletions,
insertions and reversals. Doklady Akademii Nauk SSSR 163.4:845-848.

MacKenzie, M., Duff, E., B. Jancewicz, M.-O. Junker, D. Moar, E. Neeposh, L.
Bobbish-Salt, & R. Salt. 2004-2008. The Eastern James Bay Cree
Dictionary on the Web : English-Cree and Cree-English (Northern and
Southern dialects). http://dict.eastcree.org/

BUILDING SEARCH ENGINES FOR ALGONQUIAN LANGUAGES

411

MacKenzie, Marguerite, Annie Whiskeychan, Daisy Moar, Ruth Salt & Ella
Neeposh. 2004. The East Cree Spelling Manual (Southern dialect), Cree
School Board:available on-line at: www.resources.eastcree.org

MacKenzie, Marguerite. 1992. Verb Paradigms in East Cree and Naskapi. 24th
Algonquian Conference Tertiary Verb Paradigms in East Cree and
Naskapi. Carleton University

Russell, Robert. Soundex. US Patent 1261167, 1918.
Salt, Luci Bobbish and Marguerite MacKenzie. 2006 The East Cree Spelling

Manual (Northern dialect). Cree School Board:
www.resources.eastcree.org

